Powder X-Ray Study on Iron – Germanium Pyroxenes

In the process of establishing the phase diagram of the GeO_2 -FeO-Fe₂O₃ system at 1000°C (*l*), we prepared FeGeO₃ and obtained its powder X-ray pattern. In the same work, we found a new ternary compound whose composition is very close to FeGeO₃ and was reported as Fe₁₀Ge₉O₂₉.

FeGeO₃ has a clinopyroxene structure and its lattice constants were first reported as a = 9.56 Å, b = 9.16 Å, c = 5.21 Å, and $\beta = 102.5^{\circ}$ by Royen and Forwerg with d values (2) and later as a = 9.74 Å, b = 9.12Å, c = 5.19 Å, and $\beta = 102.4^{\circ}$ by Grebenshchikov et al. without d values (3). The d values obtained by us are, however, quite different from those of Royen and Forwerg. The present work was undertaken in order to clarify the reasons for this discrepancy and the relation between FeGeO₃ and the compound having composition close to Fe- GeO_3 . (Hereafter, this compound will be referred to as compound D, according to the notation in the previous paper.)

The methods of preparation of the powder samples and the measurement of powder X-ray patterns were described previously (1). For FeGeO₃, needle-like single crystals were also obtained on continued heating of powder material in a silica tube, for a period of 2 weeks at 1000°C. The Weissenberg photographs were taken for this single crystal.

The powder X-ray data for FeGeO₃ could be indexed as shown in Table I based on the Weissenberg photographs. The compound has a monoclinic lattice as reported earlier (2), and the lattice constants were calculated to be a = 9.793(2) Å, b = 9.145(1) Å, c = 5.195(1) Å, and $\beta = 101.85(2)^{\circ}$.

On the other hand, the d values for 0022-4596/81/110262-0302.00/0Copyright © 1981 by Academic Press, Inc.

All rights of reproduction in any form reserved.

compound D can also be indexed on an assumption of an orthorhombic lattice, as shown in Table II. The lattice constants are a = 18.913(2) Å, b = 9.106(1) Å, and c =5.428(1) Å. The powder X-ray pattern of compound D resembles that of germaniumcontaining orthopyroxene such as MnGeO₃ (4), or CoGeO₃ (5). The lattice constants resemble each other as well. On the basis of

TABLE I

POWDER X-RAY	DATA FOR	Fe _{1.07} Ge _{0.93} O ₃
--------------	----------	--

	$d_{\rm obs}$	deale	_	
hkl	(Å)	(Å)	I _{obs}	
020	4.58	4.573	5	
111	4.34	4.340	5	
021	3.40	3.400	25	
220	3.31	3.308	35	
310	3.02	3.016	80	
221	2.973	2.972	55	
311	2.849	2.847	25	
2 2 1	2.610	2.609	55	
13Ī	2.593	2.593	100	
002	2.541	2.542	30	
400	2.397	2.396	10	
040	2.287	2.286	5	
112	2.269	2.268	5	
312	2.161	2.161	30	
33Ī	2.138	2.137	5	
421	2.099	2.099	5	
041	2.086	2.085	10	
240	2.064	2.064	10	
241	1.975	1.974	5	
222	1.890	1.891	5	
510	1.876	1.876	10	
2 4 1	1.856	1.856	15	
53Î	1.630	1.630	25	
350	1.587	1.587	30	
060	1.524	1.524	15	
133	1.505	1.505	20	
60Ž	1.498	1.498	15	
351	1.473	1.473	35	
35Ž	1.413	1.413	10	

TABLE II POWDER X-RAY DATA FOR Fe_{1.07}Ge_{0.83}O₃ (Compound D)

	$d_{\rm calc}$	dobs			
$I_{ m obs}$	(Å)	(Å)	h k l		
10	4.553	4.55	020		
25	3.430	3.43	121		
10	3.320	3.32	411		
100	3.273	3.27	221		
45	3.052	3.05	321		
95	2.979	2.978	610		
15	2.937	2.937	511		
40	2.807	2.807	421		
25	2.624	2.623	131		
30	2.609	2.608	202		
35	2.564	2.564	521		
20	2.551	2.551	231		
15	2.493	2.492	302		
15	2.404	2.403	312		
10	2.339	2.339	621		
5	2.276	2.276	040		
5	2.205	2.205	502		
5	2.143	2.144	512		
5	2.109	2.109	811		
10	2.086	2.087	141		
20	2.051	2.050	440		
5	2.028	2.028	631		
5	1.957	1.958	821		
5	1.916	1.917	911		
5	1.852	1.853	10 1 0		
5	1.874	1.875	622		
5	1.836	1.835	541		
10	1.765	1.765	722		
10	1.749	1.750	812		
4	1.715	1.716	242		
10	1.681	1.682	023		
10	1.675	1.676	123		
10	1.663	1.662	10 2 1		
10	1.646	1.647	931		
10	1.577	1.577	650		
15	1.549	1.549	133		
1.	1.539	1.539	10 3 1		
25	1.518	1.518	060		
15	1.442	1.442	11 3 1		

these data, it seems reasonable to assume that compound D has an orthopyroxenetype structure. According to this, the composition of compound D may not be $Fe_{10}Ge_9O_{29}$, but $Fe_{1+x}Ge_{1-x}O_3$, which can be derived from the following cation substitution relative to FeGeO₃:

$$Fe^{2+} + Ge^{4+} \rightarrow 2Fe^{3+}$$
.

Based on the above discussion, reinvestigation was performed to determine the value of x and this resulted in x = 0.07. However, since only the powder X-ray method was used for this purpose, the value is a very rough one and the homogeneity range of composition could not be decided. One might conclude that a clinopyroxene to orthopyroxene transition occurs by the above substitution in FeGeO₃.

As described previously, a serious discrepancy is present among two sets of dvalues for FeGeO₃ reported by us and by Royen and Forwerg. They reported that the single phase of FeGeO₃ was not obtained, but only a mixture with Fe_2GeO_4 . Actually, they assigned a rather strong diffraction peak, which must be assigned to the reflection from the (002) plane in our indexing, to Fe₂GeO₄ as a second phase. However, a corresponding peak is present in the other germanium-containing clinopyroxenes such as $CoGeO_3$ (5) and $MgGeO_3$ (6). Moreover, no other peaks of Fe₂GeO₄ were found in the pattern obtained by us. Their dvalues were not indexed by themselves but by the NBS (ASTM card No. 16-505), according to the lattice constants reported by them. The indexing does not seem reasonable because of large differences between d_{obs} and d_{calc} . It seems that the sample examined by them might be a mixture with orthopyroxene (compound D) as a second phase, not with Fe₂GeO₄. Since the compositions of two compounds, FeGeO₃ and $Fe_{1.07}Ge_{0.93}O_3$, are very close to each other, the product is strongly affected by small deviation from the exact mixing ratio of starting materials, such as oxidation of the iron metal used as a starting material.

Acknowledgment

The authors are indebted to Dr. K. Kato, National

Institute for Research in Inorganic Materials, for his continuous encouragement and helpful suggestions.

References

- E. TAKAYAMA, N. KIMIZUKA, K. KATO, H. YAMAMURA, AND H. HANEDA, J. Solid State Chem. 38, 82 (1981).
- 2. P. ROYEN AND W. FORWERG, Z. Anorg. Allg. Chem. 326, 113 (1963).
- R. G. GREBENSHCHIKOV, V. V. MOTSARTOV, AND O. G. CHIGAREVA, Russ. J. Inorg. Chem. 21, 1368 (1976). [Translated from Zh. Neorg. Khim. 21, 2488 (1976).]
- A. TAUBER, J. A. KOHN, C. G. WHINFREY, AND W. D. BABBAGE, Amer. Miner. 48, 555 (1963).

- 5. A. TAUBER AND J. A. KOHN, Amer. Miner. 50, 13 (1965).
- 6. C. R. ROBBINS AND E. M. LEVIN, Amer. J. Sci. 257, 63 (1959).

Eiji Takayama* Noboru Kimizuka

National Institute for Research in Inorganic Materials Sakura-mura, Niihari-gun Ibaraki-ken 305, Japan

Received April 27, 1981

* To whom all correspondence should be addressed.